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Background: Graphs

Definition

A graph consists of a set of vertices connected by edges, which are
pairs of vertices. Pairs of vertices that share an edge are adjacent.
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Background: Graphs

Definition

The complete graph on nvertices (denoted Kj,) is the graph on n
vertices where every pair of vertices is adjacent.
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Background: Graphs

Definition

The complete graph on nvertices (denoted Kj,) is the graph on n
vertices where every pair of vertices is adjacent.

For example, Ks is the following graph:
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Background: Graphs

Definition

An independent set is a set of vertices such that no two of them are
adjacent.
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Background: Graphs

Definition

An independent set is a set of vertices such that no two of them are
adjacent.

Definition

An r-partite graph is a graph where the vertices can be partitioned
into r independent sets.
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Background: Graphs

Definition

A path is a sequence of distinct vertices where each vertex is
adjacent to the next one.
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Background: Graphs

Definition

A graph is connected if there is a path connecting any pair of
vertices.
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Background: Graphs

Definition

A graph is connected if there is a path connecting any pair of
vertices.

Definition

A connected component of a graph is a maximal connected
subgraph of that graph.

A\,
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Background: Random graphs

Definition

Let n be an integer and p € (0,1). Then, Gy is a random graph on
[n] where each edge appears independently with probability p.
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Background: Random graphs

Definition

Let n be an integer and p € (0,1). Then, Gy is a random graph on
[n] where each edge appears independently with probability p.

Definition

Let P be a graph property. Let p be a function of n. Then, P occurs
with high probability on G if

lim P(P(Gnp)) = 1.

n—oo
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Background: Monochromatic components

We can color the edges of a graph. Then, the monochromatic

connected components are components in the graph restricted to a
specific color.

e/l
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Background: Monochromatic components

Proposition

Color the edges of K, red and blue. Then, either the red subgraph
or the blue subgraph is connected.
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Background: Monochromatic components

Proposition

Color the edges of K, red and blue. Then, either the red subgraph
or the blue subgraph is connected.

Question: Color the edges of K, with r colors. What is the minimum

possible size of the largest monochromatic connected component?
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Background: Monochromatic components

Theorem (Gyarfas)

If the edges of K, are colored with r colors, there is a monochromatic
component with at least " vertices.
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Theorem (Gyarfas)

If the edges of K, are colored with r colors, there is a monochromatic
component with at least "+ vertices.
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Background: Monochromatic components

Question: Color the edges of K, with r colors. What is the

maximum number of edges we can guarantee in some
monochromatic component?

24/38



Background: Monochromatic components

Question: Color the edges of K, with r colors. What is the
maximum number of edges we can guarantee in some
monochromatic component?

Conjecture (Conlon, Luo, Tyomkyn)

If the edges of K, are colored with r colors, then some
monochromatic component has at least ;714 (3) edges.
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Background: Monochromatic components

Question: Color the edges of K, with r colors. What is the

maximum number of edges we can guarantee in some
monochromatic component?

Conjecture (Conlon, Luo, Tyomkyn)

If the edges of K, are colored with r colors, then some

monochromatic component has at least ;74 () edges.
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Background: Monochromatic components

Theorem (Conlon, Luo, Tyomkyn)
The conjecture is true for r = 3 and r = 4.
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Background: Monochromatic components

Theorem (Conlon, Luo, Tyomkyn)
The conjecture is true for r = 3 and r = 4.

Theorem (Luo)

If the edges of K, are colored with r colors, then some monochromatic

component has at least W (5) edges.
- 4
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Random graph case

Let p > "&" et G = Gpp. Let the edges of G be colored with r colors.
Then, with high probability, there is a monochromatic connected
component with at least e(rG) (1 — o(1)) edges.
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Central idea

Theorem (Luo)

In a subgraph H of a complete r-part/te graph G, there must be a
connected component with at least e(H) edges.
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In a subgraph H of a complete r-partite graph G, there must be a
connected component with at least e(H) edges.

Extension to random graphs:
e Take Gpp for p = w('%&")
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In a subgraph H of a complete r-part/te graph G, there must be a
connected component with at least e(H) edges.

Extension to random graphs:
e Take Gpp for p = w('8")
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Central idea

Theorem (Luo)

In a subgraph H of a complete r-part/te graph G, there must be a
connected component with at least e(H) edges.

Extension to random graphs:
e Take Gpp for p = w('8")
e Lower bound the size of the subgraph
e Upper bound the size of the independent sets

e Change the bound to (1 — o(1 ))ee(&/;))2
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High minimum degree case

Let G be a graph on n vertices where every vertex has degree at least
(1 — c¢)n—1, for a sufficiently small constant ¢ > 0. Assume the edges
of G are colored red, green, and blue. Then, some color has a
monochromatic connected component with at least %e(G) edges.
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Thanks for watching!

Questions?



