Monochromatic Components With Many Edges in Random Graphs

Hannah Fox

MIT PRIMES

October 15, 2023

Research mentored by Dr. Sammy Luo

October 2024 PRIMES Conference

Overview

Background

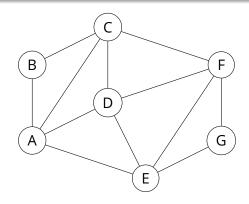
- Graphs
- Random Graphs
- Monochromatic Components
- Random graph case
- 8 High minimum degree case

Definition

A *graph* consists of a set of vertices connected by edges, which are pairs of vertices. Pairs of vertices that share an edge are *adjacent*.

Definition

A *graph* consists of a set of vertices connected by edges, which are pairs of vertices. Pairs of vertices that share an edge are *adjacent*.



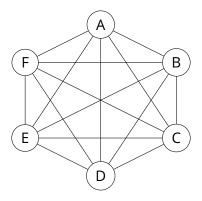
Definition

The *complete graph* on *n* vertices (denoted K_n) is the graph on *n* vertices where every pair of vertices is adjacent.

Definition

The *complete graph* on *n* vertices (denoted K_n) is the graph on *n* vertices where every pair of vertices is adjacent.

For example, K_6 is the following graph:



Definition

An *independent set* is a set of vertices such that no two of them are adjacent.

Definition

An *independent set* is a set of vertices such that no two of them are adjacent.

Definition

An *r*-partite graph is a graph where the vertices can be partitioned into *r* independent sets.

Definition

An *independent set* is a set of vertices such that no two of them are adjacent.

Definition

An *r*-partite graph is a graph where the vertices can be partitioned into *r* independent sets.

Definition

A *complete r-partite graph* is a graph where the vertices can be partitioned into *r* independent sets such that any two vertices in different independent sets are adjacent.

Definition

An *independent set* is a set of vertices such that no two of them are adjacent.

Definition

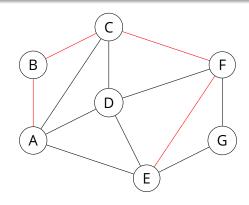
An *r*-partite graph is a graph where the vertices can be partitioned into *r* independent sets.

Definition

A *complete r-partite graph* is a graph where the vertices can be partitioned into *r* independent sets such that any two vertices in different independent sets are adjacent.

Definition

A *path* is a sequence of distinct vertices where each vertex is adjacent to the next one.



Definition

A graph is *connected* if there is a path connecting any pair of vertices.

Definition

A graph is *connected* if there is a path connecting any pair of vertices.

Definition

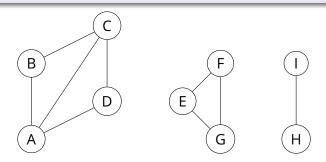
A *connected component* of a graph is a maximal connected subgraph of that graph.

Definition

A graph is *connected* if there is a path connecting any pair of vertices.

Definition

A *connected component* of a graph is a maximal connected subgraph of that graph.



Background: Random graphs

Definition

Let *n* be an integer and $p \in (0, 1)$. Then, $G_{n,p}$ is a random graph on [n] where each edge appears independently with probability *p*.

Background: Random graphs

Definition

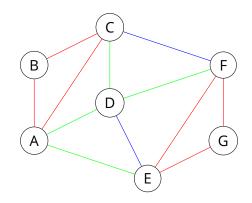
Let *n* be an integer and $p \in (0, 1)$. Then, $G_{n,p}$ is a random graph on [n] where each edge appears independently with probability *p*.

Definition

Let \mathcal{P} be a graph property. Let p be a function of n. Then, \mathcal{P} occurs with high probability on $G_{n,p}$ if

$$\lim_{n\to\infty}\mathbb{P}(\mathcal{P}(G_{n,p}))=1.$$

We can color the edges of a graph. Then, the *monochromatic connected components* are components in the graph restricted to a specific color.

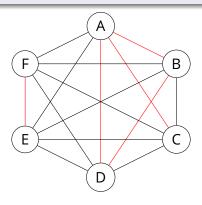


Proposition

Color the edges of K_n red and blue. Then, either the red subgraph or the blue subgraph is connected.

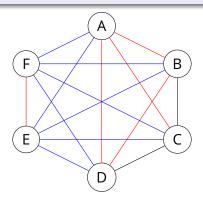
Proposition

Color the edges of K_n red and blue. Then, either the red subgraph or the blue subgraph is connected.



Proposition

Color the edges of K_n red and blue. Then, either the red subgraph or the blue subgraph is connected.



Proposition

Color the edges of K_n red and blue. Then, either the red subgraph or the blue subgraph is connected.



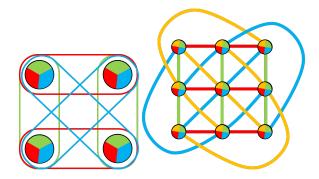
Question: Color the edges of K_n with r colors. What is the minimum possible size of the largest monochromatic connected component?

Theorem (Gyárfás)

If the edges of K_n are colored with r colors, there is a monochromatic component with at least $\frac{n}{r-1}$ vertices.

Theorem (Gyárfás)

If the edges of K_n are colored with r colors, there is a monochromatic component with at least $\frac{n}{r-1}$ vertices.



Question: Color the edges of K_n with r colors. What is the maximum number of edges we can guarantee in some monochromatic component?

Question: Color the edges of K_n with r colors. What is the maximum number of edges we can guarantee in some monochromatic component?

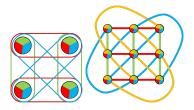
Conjecture (Conlon, Luo, Tyomkyn)

If the edges of K_n are colored with r colors, then some monochromatic component has at least $\frac{1}{r(r-1)}\binom{n}{2}$ edges.

Question: Color the edges of K_n with r colors. What is the maximum number of edges we can guarantee in some monochromatic component?

Conjecture (Conlon, Luo, Tyomkyn)

If the edges of K_n are colored with r colors, then some monochromatic component has at least $\frac{1}{r(r-1)} {n \choose 2}$ edges.



Theorem (Conlon, Luo, Tyomkyn)

The conjecture is true for r = 3 and r = 4.

Theorem (Conlon, Luo, Tyomkyn)

The conjecture is true for r = 3 *and* r = 4*.*

Theorem (Luo)

If the edges of K_n are colored with r colors, then some monochromatic component has at least $\frac{1}{r(r-1)+\frac{5}{4}}\binom{n}{2}$ edges.

Random graph case

Theorem (F.)

Let $p \gg \frac{\log n}{n}$. Let $G = G_{n,p}$. Let the edges of G be colored with r colors. Then, with high probability, there is a monochromatic connected component with at least $\frac{e(G)}{r^2 - r + \frac{5}{4}}(1 - o(1))$ edges.

Theorem (Luo)

In a subgraph H of a complete r-partite graph G, there must be a connected component with at least $\frac{e(H)^2}{e(G)}$ edges.

Theorem (Luo)

In a subgraph H of a complete r-partite graph G, there must be a connected component with at least $\frac{e(H)^2}{e(G)}$ edges.

• Take
$$G_{n,p}$$
 for $p = \omega(\frac{\log n}{n})$

Theorem (Luo)

In a subgraph H of a complete r-partite graph G, there must be a connected component with at least $\frac{e(H)^2}{e(G)}$ edges.

- Take $G_{n,p}$ for $p = \omega(\frac{\log n}{n})$
- Lower bound the size of the subgraph

Theorem (Luo)

In a subgraph H of a complete r-partite graph G, there must be a connected component with at least $\frac{e(H)^2}{e(G)}$ edges.

- Take $G_{n,p}$ for $p = \omega(\frac{\log n}{n})$
- Lower bound the size of the subgraph
- Upper bound the size of the independent sets

Theorem (Luo)

In a subgraph H of a complete r-partite graph G, there must be a connected component with at least $\frac{e(H)^2}{e(G)}$ edges.

- Take $G_{n,p}$ for $p = \omega(\frac{\log n}{n})$
- Lower bound the size of the subgraph
- Upper bound the size of the independent sets
- Change the bound to $(1 o(1))\frac{e(H)^2}{e(G)}$

Theorem (F.)

Let G be a graph on n vertices where every vertex has degree at least (1 - c)n - 1, for a sufficiently small constant c > 0. Assume the edges of G are colored red, green, and blue. Then, some color has a monochromatic connected component with at least $\frac{1}{6}e(G)$ edges.

I would like to thank my mentor, Dr. Sammy Luo, for his guidance. In addition, I would like to thank the PRIMES program for their support.

References

- D. Bal and L. DeBiasio, Partitioning random graphs into monochromatic components, *Electron. J. Combin.* 24 (1) (2017), Paper No.1.18, 25.
- D. Conlon and M. Tyomkyn, Ramsey numbers of trails and circuits, *J. Graph Theory* **102** (1) (2023), 194-196.
- D. Conlon, S. Luo, and M. Tyomkyn, Monochromatic Components with Many Edges, J. Comb. 15.1 (2024), 59-75.
- A. Gyárfás, Partition coverings and blocking sets in hypergraphs, Communications of the Computer and Automation Institute of the Hungarian Academy of Sciences **71** (1977), 62.
- S. Luo, On Connected Components with Many Edges, *SIAM J. Discr. Math.* **37** (2) (2023), 573-585.

Thanks for watching!

Questions?